Short communication

Seroprevalence and risk factors of two abortive diseases, toxoplasmosis and neosporosis, in small ruminants of the Mongo County, southern Gabon

Gael Darren Maganga a,b,* , Andre Lea Abessolo a, Clency Sylde Mikala Okouyi b , Ingrid Labouba a, Antoine Mitte Mbeang Beyeme b , Jacques François Mavoungou b , Ernest Agossou c , Brieuc Cossic c , Jean-Paul Akue a

a Centre International de Recherches Médicales de Franceville, Franceville, Gabon
b Institut National Supérieur d’Agronomie et de Biotechnologies (INSAB), Franceville, Gabon
c SIAT-Gabon Group, Libreville, Gabon

A R T I C L E I N F O

Article history:
Received 16 March 2016
Received in revised form 26 July 2016
Accepted 27 July 2016
Available online 29 July 2016

Keywords:
N. caninum
T. gondii
Seroprevalence
Sheep
Goats
Gabon

A B S T R A C T

In order to estimate the seroprevalence and to assess risk factors of Toxoplasma gondii and Neospora caninum in the province of Nyanga, in southern Gabon, a cross-sectional study was conducted in sheep and goats in the county of Mongo. Serological screening was performed using an indirect multi-species enzyme-linked immunosorbent assay and a commercial direct agglutination test to test serum samples for the presence of anti-N. caninum and anti-T. gondii Immunoglobulins (Ig) G antibodies, respectively.

From a total of 201 small ruminants, including 95 sheep and 106 goats, the overall anti-N. caninum and anti-T. gondii IgG seroprevalences were 31.3% (n = 63) and 45.8% (n = 95), respectively. Statistical analyses showed that adult small ruminants were 4 times more likely to be infected with T. gondii than young animals (p < 0.001; OR = 4.27; 95% CI: 2.07–8.81). The locality was significantly associated with T. gondii seropositivity (p = 0.001). The Dilemba (p < 0.001; OR = 0.07), Moulangui-Binza (p = 0.023; OR = 0.05) and Rina-Nzala localities (p = 0.005; OR = 0.1) were not identified as risk locailities associated with T. gondii infection. The seroprevalence of N. caninum was significantly higher in sheep (42.1%) than goats (21.7%). The species was not associated with N. caninum infection (p = 0.005; OR = 0.27; 95% CI: 0.11–0.68). In Bibora, small ruminants were almost 4 times more likely to get Neospora infection than the animals in the other localities (p = 0.04; OR = 3.98; 95% CI: 1.06–14.93). The seroprevalence of N. caninum and T. gondii could suggest a considerable impact on the reproductive process from these pathogens in sheep and goats within the Mongo County and a high exposure of humans to T. gondii.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Abortive diseases (AD) are infectious or parasitic diseases having direct effects on animals (Rekiki et al., 2005). AD in small ruminants can be induced by various pathogens including: bacteria such as Brucella, Listeria, Coxiella, Chlamydia, Leptospira or Salmonella; viruses, for example the Rift valley fever virus; and finally, protozoan, such as Neospora or Toxoplasma. AD directly affect animal productivity by reducing the nataly rate (abortions), the production of milk, meat and derivatives (textile, oil . . .) which may have a global impact on the small ruminant industry. These diseases can also have indirect effects because of the costs of veterinary healthcare and the expenses related to livestock rebuilding. Finally, the trade in small ruminants and their products also merits consideration because sheep and goats may transmit zoonotic abortive diseases such as Rift Valley fever, brucellosis and listeriosis (Sherman, 2011). Thus the study of causal agents of AD has its importance in public and animal health, as in the case of Toxoplasma and Neospora.

Neosporosis is an AD due to the cosmopolitan coccidian parasite, Neospora caninum that mainly affects dairy cattle in which it induces 10–25% of abortions (Bowman et al., 2003; Dubey, 2003; Dubey et al., 2007). It can also cause infections in dogs and, occasionally in horses, deer, sheep and goats (Dubey, 2003). Several
studies suggest that neosporosis is frequent in goats. Indeed, some cases of caprine neosporosis have been described in California (Barr et al., 1991), Pennsylvania (Dubey et al., 1992), Costa Rica (Dubey et al., 1996) and Brazil (Corbellini et al., 2001). In addition, studies have reported the presence of antibodies against N. caninum in goats in Sri Lanka (Naguleswaran et al., 2004), in Argentina (Moore et al., 2007), in Brazil (Faria et al., 2007) and in Poland (Czopowicz et al., 2011). Although neosporosis also occurs in sheep, this is less frequent and has been associated with weak offsprings, stillborn births and congenital infections. A weak relation between N. caninum infection in sheep and abortion has been suggested (Dubey et al., 1992; Dubey and Lindsay, 1996; Corbellini et al., 2001; Howe et al., 2008; Dubey and Schares, 2011). In Gabon, the circulation of this AD is still under-documented despite the high prevalence of ADs.

Toxoplasmosis is also an AD, it is caused by the protozoan parasite *Toxoplasma gondii* which is able to infect many species of domestic and wild mammals (Ripert, 1996; Mariê et al., 2009). In sheep and goats, toxoplasmosis is the major cause of infectious abortions, stillbirths, and weak offsprings (Innes et al., 2009). *T. gondii* is mainly transmitted by ingesting contaminated grass with feces from definite infected hosts, domestic and wild felines such as cats (Innes et al., 2009). In some parts of Gabon, sero-epidemiologic studies showed high prevalence values of infection in humans (Duong et al., 1992; Mpiga Mickoto et al., 2010).

Considering the relevance of toxoplasmosis as a zoonosis and the lack of information concerning *N. caninum* in sheep and goats in Gabon, this study aims to determine the circulation of both *T. gondii* and *N. caninum* in sheep and goat populations in rural localities of the Mongo County, southern Gabon, and their transmission risk factors through a sero-epidemiological investigation.

2. Materials and methods

2.1. Ethical considerations

For this study, verbal authorization was previously obtained from the local authorities, namely the heads of the villages. An oral consent was obtained from all breeders of small ruminants for blood sampling.

2.2. Study area

Nine localities of the Mongo County were selected based on the presence of small ruminants and livestock activities (Fig. 1). The Mongo County (latitude: 3° 26'S; longitude: 11° 44'E) is located about 65 km from Tchibanga, capital of the Nyanga province at the south-west of Gabon. This area is a plateau facing the Mayombe mountain range filled with savannah and vast grasslands containing some small shrubs. There, the equatorial climate is warm and humid with a mean temperature of 25.3°C and an average rainfall of 1371 mm/year. The Mongo County houses the largest and most important cattle breeding (ranch Nyanga) of the country with a population estimated at 4690 cattle heads.

2.3. Animals sampling

No preliminary census of livestock was done in this region. No specific inclusion criteria was defined. Healthy animals (presenting no clinical symptoms) were selected according to the ability of breeders to maintain them during the blood collection. Any clinical state was an exclusion criterion. No anesthetic or other chemical treatment was administrated before blood collection.

2.4. Blood and data collection

Animal whole blood was collected in 4-ml BD Vacutainer tubes (BD-Plymouth, UK) by puncturing the jugular vein. Serum and plasma were separated by centrifugation (3000 rpm for 3 min) and stored at −20°C until their shipment to the Centre International de Recherches Médicales de Franceville (CIRMF) for further serological analyses.

Data on health history (vaccination, last diseases, abortions and stillbirths in females), species, sex, age were collected using a standard questionnaire submitted to each breeder. Animals were classified as young or adult based on dentition (Russel, 1991).

2.5. Serological screening

The presence of anti-*N. caninum* IgGs was tested by indirect multi-species enzyme-linked immunosorbent assay (ELISA) on serum samples using the ID Screen® Neospora caninum Indirect Multi-species (IDVet Innovative Diagnostics, France) (Alvarez-García et al., 2013) following the manufacturer’s instructions. ELISA plates were then read by spectrophotometry using the SUNRISE automate (Tecan Austria GmbH, Austria). The cut-off has been fixed at 50% (percentage S/P (S/P%)) following the manufacturer’s instructions. The S/P ratio or Serum/Plasma ratio, is the ratio of the difference between the sample’s optic density (OD) and the OD of the negative control on the difference of OD of the positive control and the OD of the negative control, or S/P% = [(ODsample – ODnegative control)/(ODpositive control – ODnegative control)] × 100. The results were considered positive if the S/P percentage was ≥ 50% and all values ≤ 40% were negative. As proposed by the manufacturer, all sera that react with S/P% values between 40% and 50% are considered questionable. The serum samples were analyzed for *T. gondii* specific IgG antibodies using a commercial direct agglutination test (Toxo-Screen DA, bioMérieux, France), following the manufacturer’s instructions. Sera reacting at the 1:40 dilution were regarded as positive, according to the manufacturer.

2.6. Statistical analysis

The risk of seropositivity was assessed by logistic regression. P-value < 0.05 was considered for significant results. Odds ratios (OR) and 95% confidence intervals (CI) were presented as risk index. Univariate and multivariate models were built considering four variables (age, species, sex and locality). Analyses were performed using the R software version 3.1.0 (Development Core Team 2014, USA).

3. Results

A total of 201 small ruminants were sampled, including 106 goats and 95 sheep. Among them, 38% of the females in goats and 62% of the females in sheep had problems of abortions and/or stillbirths.

The results showed that the overall anti-*N. caninum* IgG seroprevalence was 31.3% (95% CI: 24.9–37.7). The seroprevalence of *N. caninum* was higher in sheep (42.1%) than goats (21.7%). Whatever the species, the young had a lower prevalence (28%) than adults (33.3%) (Table 1). Finally, the results showed that the seroprevalence of neosporosis in females (32.1%) was higher than males (28.9%). The Table 2 shows specific anti-*N. caninum* IgG were found in 7 of the 9 villages investigated. The highest number of positive samples was collected from the locality of Bibora, where 21/38 (55.3%) tested samples presented IgG antibodies specific to *N. caninum*.

For *T. gondii*, a total of 92 individuals (45.8%; 95% CI: 38.8–52.6) were serologically positive (Table 1). Sheep had a higher seroprevalence (57.9%) than goats (34.9%). Moreover, whatever the species, young animals had a lower seroprevalence (26.7%) than adults (57.1%). Finally, females showed a higher serological prevalence (48.7%) than males (35.6%). Specific anti-*T. gondii* IgG were found in animals from 8/9 villages (Table 2). The highest number of positive samples was collected from the locality of Rina-Nzala, where 14/17 (82.4%) tested samples presented IgG antibodies specific to *T. gondii*. Mixed infections were found both in sheep and goats. Indeed, *T. gondii* and *N. caninum* specific IgG were found in 14.9% of the studied population, including 28.42% and 2.83% in goats and sheep, respectively. Analyses of the results showed that 66.6% (14/21) of the females which were reported in the questionnaire as having had an abortion and/or stillbirths were seropositive for at least one of the two abortive parasites studied (Fig. 2).

The results of the univariate and multivariate logistic regression analyses are summarized in Table 3 (Supplementary material 1) and 4 (Supplementary material 2). The age of the small ruminants showed significant differences in regard to potential risk factors for *T. gondii* infection. The adults were 4 times more likely to be infected with *T. gondii* than young animals (*p* < 0.001; OR = 4.27; CI = 2.83–5.84). Additionally, the presence of *N. caninum* was significantly higher in males compared to females (OR = 0.26; CI = 0.11–0.62).

Table 1

<table>
<thead>
<tr>
<th>Parasites</th>
<th>Species</th>
<th>N of IgG-positive sera (n)</th>
<th>Sex</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n/N</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>N. caninum</td>
<td>Sheep</td>
<td>40/95 42.1</td>
<td>Male</td>
<td>7/17</td>
</tr>
<tr>
<td></td>
<td>Goats</td>
<td>23/106 27.7</td>
<td></td>
<td>6/28</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>63/201 31.3</td>
<td></td>
<td>13/45</td>
</tr>
<tr>
<td>T. gondii</td>
<td>Sheep</td>
<td>55/95 57.9</td>
<td></td>
<td>5/17</td>
</tr>
<tr>
<td></td>
<td>Goats</td>
<td>37/106 34.9</td>
<td></td>
<td>11/28</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>92/201 45.8</td>
<td></td>
<td>16/45</td>
</tr>
</tbody>
</table>

N: number of samples tested.

Table 2

<table>
<thead>
<tr>
<th>Villages</th>
<th>No. of IgG positive sera/No. tested</th>
<th>N. caninum</th>
<th>T. gondii</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>N. caninum</td>
</tr>
<tr>
<td>Pc Nyanga</td>
<td></td>
<td>3/31</td>
<td>9/31</td>
<td>9.67</td>
</tr>
<tr>
<td>Moulengui-Binza</td>
<td></td>
<td>9/27</td>
<td>17/27</td>
<td>33.33</td>
</tr>
<tr>
<td>Dilemba</td>
<td></td>
<td>8/33</td>
<td>22/33</td>
<td>24.24</td>
</tr>
<tr>
<td>Doumanga</td>
<td></td>
<td>5/17</td>
<td>8/17</td>
<td>29.41</td>
</tr>
<tr>
<td>Rina-Nzala</td>
<td></td>
<td>6/17</td>
<td>14/17</td>
<td>35.3</td>
</tr>
<tr>
<td>Bibora</td>
<td></td>
<td>21/38</td>
<td>9/38</td>
<td>55.3</td>
</tr>
<tr>
<td>Bayadi</td>
<td></td>
<td>11/24</td>
<td>12/24</td>
<td>45.8</td>
</tr>
<tr>
<td>Matbotsa</td>
<td></td>
<td>0/9</td>
<td>0/9</td>
<td>0</td>
</tr>
<tr>
<td>Mbamba</td>
<td></td>
<td>0/5</td>
<td>1/5</td>
<td>0</td>
</tr>
</tbody>
</table>
95% CI: 2.07–8.81) [Supplementary material 2]. No statistically significant association was found between age and seropositivity to Neospora caninum in sheep and goats. Concerning the locality, Bibora was significantly associated with N. caninum infection (p = 0.04; OR = 3.98; 95% CI: 1.06–14.93). No locality was significantly associated with T. gondii infection. The type of species was not identified as a risk factor for N. caninum infection. Likewise, no significant association of species with T. gondii infection was shown. Similarly, no significant association was found between the sex of individuals and seropositivity to N. caninum and T. gondii in small ruminants.

4. Discussion

This study highlights serological evidence regarding the circulation of two abortive pathogens, T. gondii and N. caninum in small domestic ruminants from southern Gabon, where abortions and/or stillbirths have been observed in sheep and goats.

Few studies have been led on seroprevalence of neosporosis in small ruminants. The overall anti-Neospora caninum IgG antibodies found here was 31.34%. This result was higher than those found in sheep and goats in China (8.726%) using an indirect ELISA test and an indirect fluorescent antibody test (IFAT) (Liu et al., 2015); in goats in Brazil (4.58%) using the indirect immunofluorescence test (Topazio et al., 2014); in dairy sheep in Argentina (3%) using an IFAT (Hecker et al., 2013); and in sheep and goats in Greece (12.4%) using an ELISA test (Anastasia et al., 2013). These observations could suggest that animals in this region of Gabon may be less sensitive to neosporosis or simply under-exposed to the parasite. However, differences between methodologies and the variability of the analyzed species make a tight comparison difficult.

The anti-Toxoplasma gondii IgG antibodies prevalence found in this study (45.77%) was much higher than those found in sheep and goats in China by Liu et al. (2015) and Yin et al. (2015), 25.6% and 20.3%, respectively; lower than that found in sheep and goats in Greece (57.1%) (Anastasia et al., 2013); close to those found in many studies conducted in sheep and goats in Brazil (40.5% and 48.7%) (Rêgo et al., 2016), in sheep in the Ivory Coast (Kone et al., 2008) and Senegal (Dia, 1992; Pangu et al., 1993; Pangu, 2011), respectively 40% and 38.5–55%; and much higher than those found in South Africa (4.3% and 5.6%, respectively by ELISA and IFAT) (Samra et al., 2007). However, other studies reported lower seroprevalences in dairy sheep in Argentina (17.3%) (Hecker et al., 2013), in goats in Senegal (33.75%) (Dia, 1992), in goats in Myanmar (11.4%) (Bawm et al., 2016), except for Benkiran et al. (2015) who reported an overall serological prevalence of toxoplasmosis of 74% in sheep and goat herds in Morocco, using an indirect ELISA kit. Finally, as suggested by Gebremedhin et al. (2015), the differences observed in the seroprevalence of toxoplasmosis and neosporosis between this study and the aforementioned studies may be the result of serological techniques (Huang et al., 2010), sample sizes and sampling techniques (Halová et al., 2012), type of breeding (wandering or confinement) (Dubey, 2009; Dubey, 2010), climatic variations and density of felines (Gharekhani, 2013; Heidari et al., 2013).

The study of risk factor associated with both infections showed that small ruminants from Bibora were almost four times more likely to get Neospora infection than animals from the others localities. This disparity between the localities could be due to the presence of stray dogs found in the locality of Bibora, as well as poor management of household refuse by rural human populations, creating dumps which are common sources of food for these stray dogs and the wandering small ruminants. According to Liu et al. (2015) poor hygiene conditions presented a greater risk of N. caninum infection in small ruminants in China. Otherwise, previous studies have already pointed out that contact with domestic dogs or the presence of dogs in farms were an important risk factor associated with neosporosis infection in sheep and goats (Abo-Shehada and Abu-Halaweh, 2010; Topazio et al., 2014; Liu et al., 2015). Moreover, the type of species was not identified as a risk factor for Neospora infection although sheep seemed more likely to get Neospora infection than goats. This is supported by Dubey et al. (1990), who showed that sheep were more receptive to experimental inoculation of Neospora caninum than goats, and others recent studies in sheep and goats (Nasir et al., 2012; Anastasia et al., 2013; Liu et al., 2015). A previous study in Jordan in 339 sheep and 309 goats showed that the seroprevalence of N. caninum was significantly higher in sheep (63%) than goats (2%) (Abo-Shehada and Abu-Halaweh, 2010). Finally, seropositivity to N. caninum was not significantly associated with age and sex in sheep and goats. This is supported by Topazio et al. (2014) whose study showed no significant association between infection with Neospora caninum and age and sex in goats.

Only age was identified as a potential risk factor of infection with T. gondii. Indeed, age was significantly associated with T. gondii infection in small ruminants. In this study, adults were 4.27
times more likely to be infected with T. gondii than young animals. According to other previous studies, the seroprevalence of T. gondii is also significantly higher in adults (Rossi et al., 2011; Hecker et al., 2013). The higher risk of infection to T. gondii in adults suggests that horizontal transmission by ingestion of sporulated oocysts in the environment seems to be the main method of transmission (Rossi et al., 2011) because young are fed exclusively on breast milk during the first months of their life, therefore their immunity would be reinforced by the Colostrum. However, in their studies, Bawm et al. (2016) and Yin et al. (2015) did not identify age as a risk factor associated with T. gondii infection in goats and sheep. Moreover, even though the type of species was not pointed out as a risk factor associated with T. gondii infection (OR = 0.39), sheep seemed more likely to get Toxoplasma infection than goats. The same result has been found by Rêgo et al. (2016) in Brazil. On the other hand, other studies reported that goats had higher Toxoplasma seroprevalence than sheep (Anastasia et al., 2013; Liu et al., 2015).

The high seroprevalence in some of the studied localities can be explained by a stronger presence of domestic cats in these areas, with which small ruminants were regularly in contact.

Finally, regarding gender, although females showed a higher serological prevalence (48.7%) than males (35.6%) as shown in previous studies (Van der Puje et al., 2000; Hecker et al., 2013; Bawm et al., 2016), but in contrast to those reported in other studies (Soares et al., 2009; Ueno et al., 2009; Yin et al., 2015), a significant association between gender and T. gondii seropositivity was not found in either sheep or goats. This result is supported by Yin et al. (2015) and Rêgo et al. (2016) who showed that gender was not a significant risk factor for sheep. Otherwise, Rêgo et al. (2016) showed that gender (female) was a significant risk factor for goats.

Co-infections with both N. caninum and T. gondii were found in some localities where we investigated both sheep and goats. This has previously been reported by several studies (Rossi et al., 2011; Hecker et al., 2013; Liu et al., 2015).

The results of the investigation with the breeders may suggest that these pathogens could have been the cause of the abortions or stillbirths observed in females. However, the detection of IgG antibodies does not reflect current or active infections. Moreover, the research of potential abortive agents was not conducted exhaustively. Therefore, it is too early to draw conclusions on the involvement of N. caninum and T. gondii in these abortions and stillbirths. The case of the remaining 7 females which had problems of abortions and/or stillbirths, in which we did not find IgG antibodies against the two abortive pathogens, can be explained by the fact that these females were not infected with the pathogens researched.

5. Conclusion

The serological prevalences of N. caninum and T. gondii reported in this study could suggest a considerable impact on the reproductive process of sheep and goats, particularly within the Mongo county. To better understand the impact of these two abortive agents and others (Brucella, Salmonella...) on animal health in Gabon, further investigations are required on larger ruminant populations in other regions and on a bigger number of cases of abortions or stillbirths to provide detailed information on reproductive losses and the responsible causative agents. In addition, continuous monitoring and implementation of integrated control strategies (control of stray dogs and cats, public awareness campaigns...) of N. caninum and T. gondii infections are needed to develop livestock in Gabon and prevent human infections.

Acknowledgements

We thank SIAT-Gabon (Ranch Nyanga) for their help in the collection of samples, especially Bruno Besnard and Brice Adjahoumon. We acknowledge the Smithsonian Institute for their material assistance. We wish to thank Heidi Langen for the English revision of the manuscript. The CIRMF is supported by the Government of Gabon, Total-Fina-Elf Gabon, and the Ministère de la Coopération Française.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.smallrumres.2016.07.022.

References

